Methodology:

- CTGAN:

Since we have a small dataset with only 50 patients, we use the Conditional Tabular GAN
(CTGAN) [1] to generate synthetic tabular data that are similar to the 50 actual patients’ data.
The CTGAN is a generative adversarial network (GAN) that is explicitly designed for tabular
data. It is composed of a generator, a discriminator, and an embedding network. The generator
learns from the actual patient data’s distribution and provides the synthetic data, while the
discriminator is trained to distinguish the real and synthetic data. The output synthetic data will
be indistinguishable based on the judgments of the discriminator. The synthetic data serves as
extra data points for deep learning models to provide a more accurate result.

- SMOTE:

We also have a class-imbalanced dataset with only 9 patients of the 50 patients developing
new stroke within 3 months after CF-LVAD implantation. Since the CTGAN learns from
the distribution of the real patients’ data, we still face an imbalanced dataset after
adding the synthetic data from the CTGAN. In this case, we used the Synthetic Minority
Over-sampling Technique (SMOTE) [2] to balance the data distribution through
oversampling. It finds the k-nearest neighbors of the minority class and creates new
data points. Oversampling can avoid the model from always predicting the majority
class when performing a classification.
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- TabNet:

We used an attention-based neural network model, TabNet [3], for binary classification
and prediction of the post-CF-LVAD implantation strokes. The TabNet uses an
encoder-decoder structure. The encoder is composed of a feature transformer, an
attentive transformer, and feature masking, while the decoder is composed of a feature
transformer. The TabNet is designed to work well on tabular data with columns as
features and rows as samples. This matches the structure of our patient data.



- Majority Vote:

Due to a small dataset, our result from SMOTE can be variating. Therefore, to obtain a
more accurate and stable result, we will conduct 100 trials with different SMOTE
random states as inputs. After conducting the 100 trials, we will gather the probability
vector of each trial on the test data. For each patient in the testing data, we look over
the 100 trials and calculate the majority vote. If more than 50 trials have determined this
patient to have a higher than 0.5 possibility to have stroke, we will predict this patient to
have post-CF-LVAD implantation strokes. Otherwise, we predict this patient to be
normal.

Experiment:
- Procedure:

We are given a data frame with 50 patient entries and 41 valid features to consider. We
perform a label encoding for all the categorical string variables. For the rest of the
continuous variables, we standardize them by centering around the mean and scaling
them to unit variance using the StandardScaler [2]. We extract the target label
representing the presence of post-CF-LVAD implantation strokes and split the 50
patients into 85% training and validation data and 15% testing data. There are 2 positive
cases in the testing set and 4 negative cases.

After obtaining the original real training data, we add the training data frame to a
metadata object [5] and indicate categorical and continuous variable columns. The
metadata is then fed into a CTGAN synthesizer [4] with an epoch of 20. We generate
100 more samples and add them to the original training data. The synthetic data
obtained an around 75% similarity quality score.
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Then, the SMOTE over-sampler takes in this extended training data to balance the data.
We instantiate a TabNet classifier [3] with a learning rate of 0.02, an Adam optimizer,
and a binary cross entropy loss function. The training and validation data are provided
for the classifier to train with an epoch of 150, a patience level of 20, and a batch size of
4. For each epoch, the best weights that give the best validation accuracy are
automatically used. After training, the model is tested with the test data and outputs the
predictions. An Area Under the ROC Curve (AUC) score is calculated by comparing the
predictions to the actual testing data labels to evaluate the performance of the data.

Through our research, we found there is randomness of how SMOTE balances the
training data. Therefore, we tested the model over 100 trials with different random



states of the SMOTE on the same dataset for an overview of the model’s performance.
All other variables were held constant throughout the 100 trials. After the 100 trials, we
conducted a majority vote to obtain a finalized result on the test data. We compare the
test data with the ground truth to achieve an accuracy score for our model.

Multimodal approach (Jason):

In this work we used machine learning and patient metadata to predict future strokes
before they happen. Another approach we believe will strengthen our results, is
leveraging CT images of the brain associated with each subject to make predictions. In
this section we will discuss our plan to use both tabular and imaging data of all subjects,
and the possible impact this could have on predicting future strokes.

Radiomics is the collection of unique features from medical images, such as shape and
texture. In this case, we'd extract a high number of features from CT images of each
subject and append the data to our tabular dataset, reducing the high dimensional
images to a set of radiomic features. We hypothesize that the inclusion of patient
features gained from their respective set of CT images will create a more ML algorithm
and lead to the improvement of its accuracy.

Multimodal ML algorithms are a great solution to solving problems where more than one
modality is present. In our case tabular data and CT images are two different modalities,
usually used in separate environments or used as inputs to different machine learning
algorithms. An example of this is convolutional neural network (CNN)[1] algorithm which
only takes images as input, or how TabNet[2] only takes tabular data as input. Both
CNN and Tabnet can be considered as unimodal ML algorithms, where they only
received one type of data as input. We will use a multimodal approach to predict future
strokes and perform an assessment of both multimodal and unimodal approaches to
predicting future strokes. We believe that the benefit using prior CT images of all
subjects alongside with the existing tabular data will outperform our current solution,
which only employs tabular metadata of each subject.

- Results:

The average AUC score of each trial on the test data out of 100 trials is 76%. Around 40
trials received an equal or better AUC score than 90%. We conducted 10 times of these
100 trials to analyze the accuracy result. After the majority vote, we were able to
achieve an average of 93% accuracy and an average AUC score of 92%. For the six
test patients, the model was able to classify all four negative cases correctly. On
average, the model’s prediction will give us a false negative case out of the six patients.



The current limitation of this project is the small dataset. However, this preliminary study

shows promising results of deep learning models in predicting post-CF-LVAD

implantation strokes. We believe that with more funding to extract more post-CF-LVAD

implantation stroke patient data, we will be able to have a much better result.
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Several studies have tried machine learning models to predict strokes, such as using
Deep Neural Networks (DNN) to predict stroke patient mortality [4]. Although their
results were good with an 83.48% AUC score, they used a dataset of 15,099 patients.
We have also done a comparative study using SVM and DNN models on our dataset
and none achieved a more stable or better result than our proposed method. Another
research shows that the DNN network only gives a 71.6% accuracy score when
predicting with a dataset of 43,300 patient data [5]. Our study has shown that TabNet is
a more suitable model for tabular data stroke prediction than DNN. They have also
pointed out that the current limitation includes better data preprocessing methods to
balance the imbalance of medical data. Synthetic data produced by CTGAN in our
research shows that a tabular GAN network is a solution. Given our current result and
our limited data, we believe that with more data points we will be able to produce an
even better result. Furthermore, many other researchers have deep learning models
such as U-Net and ResNet [6][7] on stroke image data. In our later studies, we expect to
use the latest multimodal contrastive learning that can train on both tabular and image
data. With our current approach, we believe that having more data will enable us to
predict post-CF-LVAD implantation strokes with a stable and high accuracy.
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